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ABSTRACT - Free-flying models are commonly used fo r  path planning and 
open loop control design (i.  e., guidance design) and translational feedback con- 
trol design (i. e., control design) for deep space precision formation flying. The 
free flying model, essentially a double integrator, results f rom discarding small 
terms in the relative spacecraft equations of motion. While the magnitude of 
these discarded terms may  be small, one must show that their dynamic effects 
are small as compared to  the precision performance requirements. W e  do so 
by deriving a theoretical method for  bounding the difference between the solu- 
t ion of a nonlinear truth model of the relative translational spacecraft dynamics 
and a Simplified linear time-invariant model. Presently, the method incorpo- 
rates feedforward and static output feedback control. The method is applied 
to  a Terrestrial Planet Finder- based example. Using only feedforward control 
(guidance) the free-flying model and a Hill- Clohessy- Wiltshire Equations-based 
model are shown to be accurate to  1 c m  for up to 4 and 30 hours, respectively. 
Also shown is that the simplest free-flying model may  not be suJgicient for low- 
gain feedback control design-closed-loop tracking errors can be as large as 8 
meters. 

1 - INTRODUCTION 
Terrestrial Planet Finder (TPF) requires relative spacecraft positions to be controlled to the 
level of millimeters [Beic 991, that is, it requires precision formation flying. A common practice 
in designing trajectories and control algorithms for precision formations is to first linearize 
the “truth” model.’ For example, when a reference or “leader” spacecraft is in a circular 
orbit the Hill-Clohessy-Wiltshire (HCW) Equations can be used to design optimal controllers 
or trajectories for a formation [DeCo 91; Hada 001. A further simplification results when the 
particular circular solar orbit baselined for TPF is considered. A routine analysis shows that the 
magnitude of the solar pressure, third body perturbations and differential solar gravity terms are 
orders of magnitude less than thruster accelerations [Hada 001. Discarding these small terms 
results in the commonly called free-flying model, in which the relative spacecraft dynamics 
reduce to the standard double integrator form [Rao 01; Bear 01; Mesb 01; Hada 01; Wang 991. 

It is not sufficient, however, to only consider the magnitude of discarded terms. One must 
show that their dynamic effects are small compared to the performance requirements. This pro- 
cess is normally addressed through numerical validation: trajectories are refined using shooting 
methods and controllers are exhaustively simulated on the truth model. 

In contrast to numerical validation, this paper’s contribution is a theoretical method for val- 
idating trajectories and controllers designed using simplified models. We derive upper bounds 
for the difference between the state of a linear time-invariant (LTI) model, such as the HCW 
Equations, and a nonlinear truth model. This difference is the “error” incurred by using a 
simplified model. Control inputs are of the form uff(t) + K y  where uff(t) is a continuous feedfor- 
ward control, y is a measurement and K is a constant gain matrix. See Figure 1 for a graphical 
statement of the problem. Trajectory design is included by setting K = 0. 

‘See Ref. [deQu 001 for examples of nonlinear control design using a nonlinear model. 
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Fig. 1: Block Diagram for Error Bounding Problem Statement 
The error between the truth and simplified models is shown to be governed by an LTI 

differential equation with a “disturbance” that depends on the state of the truth model (true 
state). Error bounds are obtained via a “bootstrapping” process in which a bound on the 
true state is first assumed. This assumed bound is used to bound the “disturbance” in the 
error dynamics. Next, this disturbance bound is used in turn to bound the error. Finally, 
the assumed true state is verified by ensuring that the assumed bound is greater than the just 
calculated error bound plus a bound on the simplified model’s state. 

The next section presents the truth model and derives via Taylor expansions various sim- 
plified models for deep space formation flight. This derivation includes an order of magnitude 
analysis. Then general bounds for the difference (error) between a nonlinear model and an 
LTI model are derived. Finally, the error bounds are calculated and compared to numerically 
simulated errors for a preliminary TPF design. 

Addressing notation, geometric vectors and tensors are denoted by bold lower and upper 
case letters, respectively, e.g. p and Q. Representations of these objects in specific coordinate 
frames-vectors and matrices-are given by the corresponding unbolded symbol, e.g. p and Q. 
I 1 1  is the vector 2-norm when applied to 
vectors, and the spectral norm when applied to matrices. 

I is the Euclidean length of a geometric vector. 1 1  

2 - FORMATION TRANSLATIONAL DYNAMICS 
To derive the relative dynamics, a formation frame is introduced. Consider Fig. 2 in which 
“S/C” stands for spacecraft. An inertial frame FZ with origin 01 is located at the center of 
the Sun. The formation frame FF, based on an Earth-trailing orbit, has its origin moving in a 
circular orbit at 1 AU, i.e., r, is the circular solution to the 2-Body Problem with the Sun as 
the central body. .FF is translating but not rotating with respect to Fz. 
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Fig. 2: Frames for Formation Dynamics 

The translational equation of motion for the ith spacecraft, i = 1, 2, ..., is taken from 
[Hada 001 : ri 

ii.i = -ps- + bi + gi + U, 
1 ~ 3  

where ri is the position vector of the spacecraft with respect to 01, bi is the acceleration due 
to solar pressure, g ,  is the acceleration due to the gravitational attraction of the planets (3rd 
body effects) and ui is the control input divided by the mass. 

Considering only specular reflection and assuming the spacecraft have sun shades that al- 
ways point directly at the Sun, the solar pressure term is given by [Val1 971 

ri - 
- p.lsl” 

2SfA( 1AU)2 ri bi = 
me lriI3 



where Pi is referred to as the solar pressure coefficient, the factor of 2 is from assuming perfect 
reflectivity, S f  is the average solar flux at 1 AU (1353 W/m2), A is the area of the sun shade, c is 
the speed of light, m is the spacecraft mass, assumed constant, and the squared term accounts 
for the decrease in energy flux with distance from the Sun. 

To derive the relative spacecraft dynamics truth model, we start with the dynamics of the 
position of spacecraft i with respect to OF,  denoted r,i = ri - r,. For many deep space 
formations IrFil is less than a few hundred kilometers over the time scales of interest, whereas 
Ir,l x 1 AU. Therefore, we Taylor expand l/lri13. Define the tensor Qr A (1 - 3ff) where 1 
is the unit tensor, i. is the unit vector of r and rr is a direct product. The Taylor expansion 

where & is the combined remainder from all the Taylor expansions and Pk and rk, are, respec- 
tively, the gravitational parameter of- and the position of 0, with respect to the planets in the 
sum. When represented in a certain rotating frame, the first term on the right hand side yields 
the HCW Equations. Since the Taylor remainders are retained, (2) is still the full, nonlinear 
model; only its form has been changed.2 

As in Fig. 2, p = rFi - rFj, and so the relative dynamics are obtained by subtracting (2) 
with i replaced by j from itself 

(3) 
where AP = Pi - pj. (3) is the truth model and it is in a form that allows the effects of the 
nonlinearities to be quantified. The three solar pressure terms (terms including ‘‘P’ ) are referred 
to as, in order: I)  the DC term, 11) the Q term, and 111) the Offset term. The Offset term and 
the remainder terms, Ei and E j ,  depend on rFj. (3)’s derivation is similar to a derivation in 
Ref. [Vass 851, except that all terms have been retained-quantifying their effects is our aim. 

By assumption Ir,l = 1 AU. Further assume IpI 5 l k m ,  which is the case for TPF, and 
Ir,jI 5 1 km (the level of inertial positioning accuracy for TPF may vary as TPF designs 
mature). Note 11Qrll = 2 for all r. Table 1 shows upper bounds on the terms of the truth model 
(3) for TPF and StarLight (a possible TPF precursor) designs. Briefly, spacecraft masses range 
from 400 to 700kg, sun shade diameters from 3 to 15m and thrusters from 7.5 to 100”. 
Table 1 shows that the DC term dominates all non-thruster terms by at least four orders of 
magnitude. Also, the solar gravity term, the largest term on the right-hand side of (3) that is 
a function of p, is six orders of magnitude less than the thruster accelerations. 

These comparisons motivate three free-flying models: a model with no disturbance (n- 
model), a model with a constant (or 0th order) approximation to the DC term (po-model), and 
a model with the full DC term (p,-model). The n-model is a pure double integrator. For the po- 
model, without loss of generality, a representation in .FI of r, is rF = (1AU) [ COS(U,~) sin(w,t) 0 I T .  
A Oth order approximation to the DC term, dsp ,  is di i )  = AP/IrFI2 [ 1 0 O I T .  Letting dk) be the 
kth order time-varying geometric vector comprising r, the free flying models are 

pn = (Ui - Uj) ) p p ,  = (LIZ - Uj) + d g ) ,  
1. and p p ,  = (ui - uj) + dsp . 

We also consider a non-free-flying model that includes the full solar gravity term. The HCW 

PS 

Equations-based3 g,-model is 

i i g ,  = (ui - uj) - -Qr/g, + d s p .  
IrFl3 

2Taylor expansions, however, are not universally valid. The condition IrFil/lrlFl < 1 is sufficient for the 

3Though this model is essentially the HCW Equations, it describes the relative dynamics between two 
validity of (2) ,  where 1 can stand for any of the planets or the Sun. 

spacecraft neither of which is in a circular orbit. 



Table 1: Bounds in m/s2 on Terms” in Expanded Relative Dynamics 
for Starlight and TPF  for IrFl = 1 AU and lrFjl, IpI 5 1 km. 

Term 
One Thruster 

Solar Pressure DC term 
Solar Gravity 

Terran . 10” Separation 
Gravity . 35” Separation 

Max. Venusian Gravity 

Starlight TPF  
2.0e-5 1.5e-4 
2.4e-7 7.3e-7 
8.0e-11 same 
4.5e-14 same 
l.le-15 same 
9.2e-15 same 

Solar Pressure Q term 
Solar Pressure Offset term 

I 

Max. Jovian Gravity I 1.Oe-15 same 

2.3e-15 3. Oe- 14 
2.7e-15 9.7e- 15 

Max. Martian Gravity 
Max. Mercurial Gravitv 

I 

&i - &i I l.le-17 l.le-17 1 
1.8e-16 same 
5.8e-17 same 

~ 

a Planetary terms with maximum accelerations of less than 
le-18 m/s2  are omitted. 

All of these simplified models for the relative spacecraft state can be propagated without 
knowing the inertial state of either spacecraft. In the truth model (3), however, rFj appears in 
addition to p. The truth model actually consists of (3) and (2)’ the latter with i replaced by j. 
More generally, the state vector of a formation consists of a spanning set of relative spacecraft 
states and the inertial state of one spacecraft. The former portion of the formation state is 
referred to as the relative state, and the latter as the inertial state. The inertial state is not the 
formation state represented in an inertial coordinate frame. 

We now introduce some notation. Bounding the error in the simplified relative state models 
requires four states. Two are the true relative and inertial states, x and xI ,  respectively. In 
our case, x = [ pT PTIT and xI = [ r:j f T .  1’. The other two states are the simplified relative 
and inertial states, x, and x ~ , ~ ,  respectively. In our case, x, = [p: p:IT, for example, and 
x ~ , ~  = [I-:~,, i-:j,s]T, where rFj,+ is the position of spacecraft j with respect to OF given by the 
simplified model 

FJ 

3 - ERROR ANALYSIS 
The previous models may be described with the following generalized equations: 

X = AX + B U T  + D ( t ,  X, X I )  X I  = A I X I  + B I u I  + DI((t, X I )  

y = c x  

Ys = c x ,  

~1 = CIxI 

Y I , ~  = CIXI,~ 
X S  = + + D D , ( t )  XI,, = AI ,Sx I ,S  + BIuI , .¶  + D I , S ( t )  

where the y’s are the outputs available for feedback (assumed not to explicitly depend on u’s, 
i.e., D = 0) the 27’s are time varying “disturbances”-disturbances, true inertial state terms, 
all nonlinear terms and those linear terms that can not be rendered time-invariant are all 
lumped into them. uI is the control of the j t h  spacecraft, whereas uT is the differential control 
between the ith and j t h  spacecraft. In putting (3) in the form above, the geometric vectors 
are represented in the HCW coordinate frame as then QrF is constant. However, the linear 
planetary terms, those involving Q,,, are time varying and so become part of D(t ,  x, xI ) .  

Let the error incurred in the relative and inertial states due to using simplified models be 
A = x - x, and AI = xI - xI,,, respectively. The equation for AI has the same form as the 



equation for A and so we only consider A. Subtracting the equation for x, from the equation 
for x and substituting for u and u, yields 

A = (A, + BKC)A + {D( t ,  IC, XI) - D,(t) + ( A  - A,)Ic} 

= &+r. ( 5 )  

Bounding the error in the simplified relative state, A, is complicated by the fact that ( 5 )  
depends on the true inertial state, xI. Hence, the true inertial state must also be bounded. Let 

denote a constant upper bound of 1 1  1 1  and ;(t)  denote a time varying upper bound of 1 1  1 1 ,  
both bounds valid over a time interval that must be specified. With this notation, the error 
bounding process is described in detail in Table 2. The equation used to generate z,(t) in Step 
6) of the table is presented next, followed by two methods for bounding A (Step 8). The same 
equation and methods are used to calculate zI,,(t> in Step 2) and bound AI in Step 4), the only 
difference is that subscripted 1 's  must be added to all quantities. 

The following notation is useful in deriving tighter bounds. Let [ .Im, m = 1 ,2 ,  be the mth 
3-vector of the vector argument. Since they appear so often, we use X and i, for [A], and [A],. 
For matrices, [ . ]m,n,  m, n = 1 ,2 ,  is the m-by-nth 3-by-3 submatrix of the argument. 
3.1 - Bounding the Simplified Relative States 
Let the initial conditions over which the controller (trajectory) is to be validated be specified as 
a nominal initial condition I C * ( O )  plus a variation Ax(0). Similarly, let the disturbance be given 
by a nominal disturbance D:(t) plus a variation AD,. Then from the Variation of Constants 
equation with u = u,,+ Ky,, we have 

- 

A tighter bound can often be obtained by calculating last two terms on the right-hand side of 
(6) as, respectively, 

3.2 - Method 1 
Method 1 is primarily used for validating controllers. Given verified values of a: and zI (see 
Table 2), a value for T can be calculated. Since z(0) = xs(0), A(0) = 0. From ( 5 )  and the 
Variation of Constants equation we have 

( 7 4  

The advantage of (7.b) and (7.c) is that they are tighter since they can incorporate [rIl = 0, 
which is the case for all the formation flying models considered. 
3.3 - Method 2 
This method is used for trajectory validation only as it results in monotonically increasing error 
bounds. Assume the following structures for A,, B and r: 

A,= [VI, HA H i  B =  [+] 



1) Choose a time interval of interest, [ O , t f ]  
(e.g. for TPF  a formation rotation will take 
8 hours). 
2) Calculate 31,s(t) on [0, tf]  (time interval im- 
plied hereafter) using (6). 
3) Set t* = argmax{TI,,(t)}. Based on ZI,,(t*), 
assume a value for Z I .  
4) Using the assumed Z I ,  calculate KI(t) using 
Method 1 (53.2) or Method 2 (53.3). 
5) Verify TI  2 max{ZI,,(t) + KI(t)}. Other- 
wise, assume a larger value for ZI and go to 
Step 4). This process is not guaranteed to 
lead to a verifiable 5%. 

6) Calculate 3,(t) using (6) 
7) Set t* = argmax{Z,(t)}. Based on zs(t*), 
assume a value for 3. 
8) Using the assumed 3, calculate K(t) using 
Method 1 or Method 2. 
9) Verify a: 2 max{z,(t) + x(t)}. Otherwise, 
assume a larger value for 3 and go to Step 8). 
This process is not guaranteed to lead to a 
verifiable 3. 
10) Done. A(t) is a bound on the relative 
state error for t E [ O , t f ] .  

- 

- 

Choosing 5 and so that these inequalities are just satisfied at time t yields the condition 

This equation leads to the following error bounds: 

4 - TPF EXAMPLE 
These bounds are now calculated for two spacecraft, a Combiner and Collector, in a TPF-based 
formation. To evaluate the conservatism of the bounds, the truth model is also simulated with 
17 digits of integrator accuracy-equivalent to an accuracy of one micrometer at one AU.4 

We first take tf = 1.44e5 s (40 hours). For both trajectory and control validation, spacecraft 
j ,  the Combiner, is drifting inertially starting at x;(O) = 0 with uncertainties [AxI(0)], = 10m, 
[AxI(O)I2 = 1 m/s and [ADI,,I2 set to 10% of supt l[D~,ll,  [ADI,,], is zero. Then from (6), 31,s = 
156911.2. Assuming ZI = 156912, error bounds are calculated via Method 2. The maximum 
error is 0.1, and so ZI is verified. A truth simulation for an initial condition satisfying the above 
variational bounds resulted in IlxI(tp) 1 1  = 155303-31 is only 1% conservative. Spacecraft i, the 
Collector, is placed 999 m away from OF in a direction selected heuristically to maximize D(t). 
Feedforward control holds it there by canceling the terms in the respective simplified model. 
Since we are not considering trajectory sensitivity, Ax(0) = 0. We also assume ms = 0; 
otherwise a different 3, must be calculated for each simplified model. With these assumptions 
3, = 999 is valid for all times-in (6) the first term on the right-hand side equals 999 by 
construction and the remaining two terms have been assumed to be zero. 

Consider trajectory (i.e., open loop control) design in which K = 0. Assume 3 = 1000. 
Error bounds are calculated using Method 2. We are only concerned with relative position 
errors on the order of 1 cm. Over the range of time that this is the case, the error bound is less 
than 1, and so 3 is verified. 

In Fig. 4 the error bounds for l lA l l  are plotted as dashed lines and the errors as calculated in 
MATHEMATICA for heuristically selected initial conditions are plotted as dashed lines. Since the 
error bound does not depend on uff(t), these bounds tell us the most error incurred by using a 
simplified model for any trajectory design in which the formation has drifted roughly less than 

4The truth simulations are performed in MATHEMATICA using the NDSolve function. NDSolve uses an 
Adams Predictor-Corrector with adaptive step size. Internal calculations are set to 27 digits in MATHEMATICA, 
corresponding to an absolute accuracy goal for NDSolve of 17 digits. 



157Icm from the reference circular orbit and the error bound plus the simplified relative state 
bound remains less than 1000. For example, the g,-model bound applies to reconfiguration 
trajectories designed using the closed-form Lambert’s solution of the HCW Equations. 
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Fig. 3: Guidance Error Bound Comparisons for TPF  

For feedback controller validation using Method 1, we only consider the n-model for brevity. 
The Collector is placed 1000 m away from the Combiner and is commanded to the point 1000 m 
on the other side of the Combiner. C is taken as the identity matrix and two linear-quadratic 
regulators are designed with identity state weighting matrices. Their control weight matrices 
are the identity matrix (High-Gain, maximum acceleration in simplified model of 3.2e3 m/s2) 
and the identity matrix multiplied by le14 (Low-Gain, max. accel. of 2.4e - 4 m/s2, consistent 
with the saturation limit of Table l), respectively. Shown in Fig. 4 are the error bounds 
calculated using Method 1 and the actual errors as simulated in MATHEMATICA. From the 
figure, one sees that if the control authority is large, a simplified model may be used with 
greater impunity than if the control authority is small-for the low-authority controller design 
using the disturbance-free free-flying model leads to 8 meters of error. 

The bootstrapping error bounding technique developed in this paper has shown that trajectories 
designed using a free-flying model with a constant solar pressure disturbance can be accurate 
to l c m  for up to 4.5 hours (under some assumptions). This accuracy means that for TPF 
reconfigurations taking less than 4.5 hours, optimal trajectories can be designed using the free- 
flying model without the need to refine them. Also shown was that trajectories designed using 
a HCW Equations-based model are accurate to 1 cm for up 30 hours (subject to assumptions). 

5 - CONCLUSIONS 



The error bounding results for static feedback controllers need to  be extended to more real- 
istic control scenarios in which the reference trajectory is fed to the controller in increments- 
feedback control would not be started with an initial error of 2km. Nonetheless, a method 
was developed for quantitatively bounding the error when a linear output feedback system is 
applied to a nonlinear truth model. Further, it was shown theoretically that high gain control 
designs on a free-flying model can have sub-micrometer errors, while low-gain control designs 
can have errors on the order of meters. 
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